баннер
  • Часто задаваемые вопросы по быстрому прототипированию с ЧПУ и обработке деталей Mar 18, 2025
    1. Каковы преимущества Прототипы с ЧПУ по сравнению с 3D-печатью?Ответ: Прототипы с ЧПУ, как правило, превосходят 3D-печать с точки зрения точности и выбора материала. Обработка с ЧПУ позволяет обрабатывать различные материалы, такие как металлы и пластики, и обеспечивает высокое качество поверхности, что больше подходит для функционального тестирования и производства конечного продукта.Понимание влияния раннего участия в прототипировании на проектирование продуктаРаннее привлечение экспертов по прототипированию играет решающую роль в процессе проектирования продукта. Привлекая этих экспертов на начальных этапах, проектные группы могут использовать их навыки для прогнозирования и смягчения потенциальных проблем, которые могут возникнуть в ходе производства.Основные преимущества раннего привлечения экспертов:Расширенное сотрудничество: благодаря раннему привлечению экспертов по созданию прототипов команды разработчиков и производственных подразделений работают в тесном контакте, обеспечивая единый подход на протяжении всего процесса разработки.Выявление проблем на ранней стадии: эти эксперты делятся ценной информацией, которая помогает выявлять возможные препятствия при проектировании задолго до того, как они перерастут в дорогостоящие производственные проблемы.Оптимизация для повышения технологичности: благодаря своему обширному опыту специалисты по прототипированию могут предложить модификации, которые сделают конструкцию более простой и экономически эффективной в производстве.Улучшение производительности: раннее внесение данных гарантирует, что продукт не только соответствует ожиданиям по производительности, но и превосходит их, благодаря итеративному тестированию и улучшению под руководством экспертов по прототипированию.Подводя итог, можно сказать, что использование знаний экспертов по прототипированию на начальном этапе проектирования обеспечивает более плавный переход от концепции к конечному продукту, а также повышает эффективность и качество.2. Какова обычно продолжительность цикла обработки прототипов ЧПУ?Ответ: Цикл обработки прототипов ЧПУ зависит от сложности конструкции и выбранных материалов. Простые конструкции могут быть завершены за 1-3 дня, в то время как сложные прототипы могут занять 5-7 дней и дольше.3. Как прототипирование с ЧПУ сокращает производственные затратыПрототипирование с ЧПУ играет решающую роль в минимизации общих производственных расходов, решая проблемы проектирования и производства заранее. Вот как:Раннее выявление дефектов: Создавая прототип, потенциальные проблемы в процессах проектирования и производства выявляются до того, как они перерастут в нечто большее. Это позволяет быстро вносить коррективы, гарантируя, что дорогостоящие ошибки не попадут в массовое производство.Эффективность в итерациях: вместо полного производственного цикла для тестирования конструкции, прототипирование с ЧПУ позволяет проводить итеративное тестирование и доработку. Этот процесс экономит значительные расходы, связанные с крупномасштабными изменениями после начала производства.Оптимизация материалов и процессов: с помощью прототипирования с ЧПУ предприятия могут экспериментировать с различными материалами и методами, чтобы определить наиболее экономически эффективные варианты без выделения существенных ресурсов. Такое экспериментирование приводит к оптимизации производственных процессов, минимизации отходов и снижению затрат.Снижение рисков: моделирование реальных условий и условий эксплуатации во время создания прототипов с ЧПУ позволяет решать непредвиденные проблемы, снижая вероятность дорогостоящих отзывов или отказов продукции после запуска.Внедрение прототипирования с ЧПУ в фазу разработки может привести к стратегическим возможностям экономии затрат, обеспечивая более плавный переход от концепции к готовому к выходу на рынок продукту.4. Как обеспечить точность размеров прототипов ЧПУ?Ответ: Точность размеров гарантируется точным оборудованием с ЧПУ, строгим контролем параметров обработки и последующим тестированием. Использование высококачественных инструментов и резцов также очень важно.5. Какие материалы чаще всего используются при изготовлении прототипов на станках с ЧПУ?Ответ: Обычные материалы включают алюминий, медь, нержавеющую сталь, АБС-пластик и нейлон. Эти материалы широко используются благодаря своим превосходным механическим свойствам, обработке и эффектам обработки поверхности.6. Можно ли изготавливать прототипы с ЧПУ небольшими партиями?Ответ: Да, прототипирование с ЧПУ очень подходит для мелкосерийного производства, особенно когда вам нужно быстро проверить дизайн или провести рыночные испытания. Его гибкость и точность делают его идеальным выбором.7. Подходит ли прототип с ЧПУ для сложных геометрических форм?Ответ: Обработка с ЧПУ может обрабатывать очень сложную геометрию, особенно при использовании 5-осевых станков с ЧПУ. Однако некоторые чрезвычайно сложные конструкции могут потребовать специальных приспособлений или пошаговой обработки.8. Каковы варианты обработки поверхности для прототипов с ЧПУ?Ответ: Обычные методы обработки поверхности включают: Пескоструйная обработка, анодирование, гальванопокрытие и полировка. Эти обработки могут улучшить коррозионную стойкость, твердость или достичь определенных эстетических эффектов.9. Для каких отраслей промышленности подходят прототипы с ЧПУ?Ответ: Прототипы станков с ЧПУ широко используются во многих отраслях промышленности, таких как автомобильные детали, аэрокосмические детали, детали медицинских приборов, детали бытовой электроники, детали промышленного оборудованияи т. д., и особенно подходят для сценариев применения, требующих высокой точности и функциональной проверки.10. Как правильно выбрать Служба прототипирования с ЧПУ провайдер?Ответ: При выборе поставщика следует учитывать возможности его оборудования, технический опыт, цикл поставки, систему контроля качества и отзывы клиентов. Также важно понимать, может ли он соответствовать определенным требованиям к конструкции и материалам. Каковы преимущества внутренних возможностей обработки и изготовления? Собственные возможности механической обработки и изготовления дают ряд преимуществ, которые отличают компании от тех, кто передает эти услуги на аутсорсинг:Скорость и эффективность: выполняя задачи по обработке и изготовлению внутри компании, компании могут значительно сократить сроки выполнения. Такая эффективность означает, что проекты переходят от концепции к завершению гораздо быстрее, чем при использовании сторонних услуг.Улучшенный контроль качества: Поскольку каждый этап процесса проходит под одной крышей, есть большая возможность контролировать и поддерживать стандарты качества. Этот контроль минимизирует ошибки и гарантирует, что каждый продукт соответствует критериям высокой производительности.Экономическая эффективность: Внутренние возможности устраняют необходимость во внешних подрядчиках, снижая общие затраты на проект. Экономия затем может быть передана клиентам, что делает услугу более конкурентоспособной на рынке.Гибкость с прототипированием: быстрые корректировки могут быть сделаны на этапе прототипирования, что позволяет проводить быстрые итерации и улучшения. Такая гибкость имеет решающее значение для соответствия спецификациям клиента и быстрой адаптации к изменениям.Конфиденциальность и защита интеллектуальной собственности: проведение всех операций внутри компании снижает риск кражи или утечки интеллектуальной собственности, обеспечивая безопасность ваших разработок и инноваций.Интегрируя эти возможности внутри компании, компании повышают общую эффективность своей работы, поставляя превосходную продукцию с большей скоростью и надежностью.11. Почему создание прототипа считается критически важным этапом разработки продукта?Прототипирование является важным шагом в процессе разработки продукта из-за его многогранных преимуществ. По своей сути, прототипирование подразумевает создание начальной модели продукта. Этот основополагающий шаг позволяет командам исследовать и тестировать различные аспекты, такие как функциональность и дизайн, перед масштабированием до полномасштабного производства.Преимущества прототипирования:Раннее обнаружение недостатков дизайна: экспериментируя с прототипом, можно выявить потенциальные проблемы как в дизайне, так и в функциональности до начала массового производства. Этот проактивный подход помогает избежать дорогостоящих доработок в дальнейшем.Повышение производительности продукта: итеративное тестирование прототипа гарантирует, что внесение изменений и улучшений в конструкцию может быть эффективным, что в конечном итоге приводит к созданию продукта, который хорошо работает в реальных условиях.Эффективность затрат: корректировки на ранних стадиях существенно экономят время и ресурсы. Выявляя проблемы заранее, компании могут избежать дорогостоящих производственных ошибок, оптимизируя свои инвестиции.Соответствие ожиданиям клиентов: прототипы предоставляют реальный способ оценить, будет ли продукт соответствовать потребностям потребителей и стандартам качества, тем самым гарантируя более высокую удовлетворенность клиентов после выпуска.Подводя итог, можно сказать, что создание прототипов является незаменимым, поскольку позволяет командам совершенствовать и доводить продукт до совершенства, эффективно повышая его соответствие как отраслевым стандартам, так и требованиям потребителей.
  • What materials are best for custom robot parts? Mar 25, 2025
    Metals: Aluminum, stainless steel, and titanium alloys are ideal materials for custom robot parts because they are lightweight but strong, making them ideal for parts that need to withstand heavy use and frequent movement. Copper, brass, and bronze have excellent electrical conductivity, making them ideal for parts that require electrical current or wiring.   Plastics: ABS, polycarbonate (PC) and acrylonitrile  stybutadienerene (ABS) are all highly durable materials that can withstand extreme temperatures and harsh environments, making them suitable for robotic applications. High density polyethylene (HDPE), polypropylene (PP), and nylon offer flexibility while remaining light, which makes them ideal for creating custom robotic parts with complex shapes or complex designs.                
  • From prototyping to production – how 3D printing is evolving Printing production-run volumes of parts is becoming an increasingly viable solution. Apr 08, 2025
    While the use of 3D printing for rapid prototyping has been developing since the late 80s and is now extremely common, the industry has also steadily continued its move towards production applications, including low-volume production, mass customization, and serial production. “We’re seeing more and more large-quantity orders and repeat orders,” says Protolabs’ Robin Brockötter. “There’s definitely a trend towards full-scale production.” This is influenced by many and diverse factors, including a preference for more local production amid global supply-chain disruptions (9% of our survey respondents said low susceptibility to supply chain issues is the main reason why they opted for 3D printing over other manufacturing methods) and sustainability concerns. In 2023, 21% of our survey respondents used 3D printing for end-use parts—up from 20% in 2022—and 4% used it for aesthetic parts. When it comes to replacing injection-molding manufacturing with 3D printing processes, it’s all about order volumes: for low-volume production, 3D printing is often the more cost-effective solution, while at higher volumes, injection molding becomes more economical. However, the point where that happens— the ‘sweet spot’ of maximum viable 3D printing order volume—is shifting. “3D printing can now start producing more and more parts before injection molding becomes cheaper,” says Brockötter. Results from our 2024 survey support this. In our 2023 survey, doubts around 3D printing as a choice for “production volume and scale” led 47% of respondents to opt for different manufacturing technologies, but this year that number has dropped to 45%, showing increased confidence in scaling with 3D printing. And throughout the years, our surveys also show a steady growth in production-run volumes: respondents saying they printed more than 10 parts rose from 36% in 2020, to 49% in 2021 and to 76% in 2022. While this figure has stayed the same for 2023, marking stabilization, the percentage of respondents saying they printed more than 1000 parts rose from 4.7% in 2022 to 6.2% in 2023. Beyond the actual printing process, there are many other aspects that influence the scalability of using 3D printing technologies for production, from software, design, and materials to post-processing and finalizing tasks such as cleaning, secondary finishing, spot removal, stress relief, and inspections. As the 3D printing ecosystem continues to mature, a support system of companies providing many of these services is springing up around 3D printing businesses, simplifying production processes. This in turn will encourage the uptake of these processes. In addition, increasing familiarity with DFAM—the additive design space—will mean engineers and designers will become more proficient at navigating design limitations and opportunities and leveraging new materials. And many obstacles are becoming less of an issue due to new developments and technologies. One example is post-processing, which can currently present a bottleneck. 27% of respondents to the 2024 survey named “post-processing and finishing requirements” as a reason for choosing other manufacturing methods over 3D printing, and 40% listed “quality and consistency of the final product”. However, as vapor smoothing is becoming prevalent across the industry and surface finishes are being radically improved, postprocessing is becoming less of a hurdle for production-level 3D printing. “Vapor smoothing machines have come a long way in recent years,” says Grant Fisher, supply chain manager at Protolabs, “specifically for vapor smoothing Nylon 12”—the most common material for MJF and SLS parts. “We continue to see a lot of growth in MJF and SLS, and vapor smoothing is a great option for aesthetic and end-use parts.” Another example is automation of the manufacturing process. For instance, computer-visionsupported systems to help sort finished 3D printed parts can represent significant labor savings and cost efficiency, further pushing the numbers in favor of 3D printing. Standardization is one key issue that remains, particularly in sectors such as aerospace, automotive and the medical industry. “We do a lot of work with aerospace, particularly in metal printing,” says Protolabs’ Eric Utley, “and the big hurdle that everyone’s dealing with is standardization. Building out that validation and standardization—I personally think it will take a few years to unstick that.” But the will is there and the cogs are moving. “It is a big talking point in the wider industry,” says Utley. The medical and aerospace sectors are the ones where 3D printing for production will continue to play the biggest role, says Alex Huckstepp. “These are the industries that are willing to spend a lot on high-performance, high-quality, complex custom designs and components. And that was always thought of as where 3D printing in production could make sense. The real production growth is still coming from those two industries. The space-race boom that we’re seeing has definitely been a tailwind for 3D printing.” There’s another point that’s often overlooked when discussing production-level 3D printing, sometimes to the detriment of embracing its incredible potential: it shouldn’t necessarily be approached as a replacement for existing technologies at all. “I think a lot of people have in their mind that 3D printing is an injection molding competitor—yeah, it’s not,” says DIVE’s Adam Hecht. “It’s an entirely new way of making things. They just don’t compete. There’s some overlap, yes, but ultimately, their careers separate. 3D printing is an entirely new tool. It’s enabling us to solve problems, and ultimately, to make products that previously couldn’t exist. All the low-volume, specialized applications and products where you previously had to tell people, sorry, we can’t make that—we can make them now. It’s just entirely different.” And one thing that’s going to enable and accelerate this are the specialized materials that are increasingly emerging on the 3D printing market.
  • About CNC Machining Apr 11, 2025
    What is CNC machining? CNC stands for Computer Numerical Control, so CNC machining can be defined as a manufacturing process where a computational code controls the parameters of the process, including: Movement of the machine tool head. Movement of the part or feed. Rotational speed. Tool selection, for multi-tool heads. Amount of coolant if needed. In simple words, it means using computational power to control and monitor all the necessary movements of a machine to manufacture parts out of raw material. How does CNC machining work? Basically, the CNC program provides commands that the machine can read and understand. These commands tell the motors of the machine when and how to move the corresponding components to achieve the desired results. The first CNC machines used punch cards with the written code and had limited flexibility for the movement of the tool. However, current CNC machines can be associated with CAD/CAM software (Computer Aided Design/Computer Aided Manufacturing). This means that the designer can create a 3D model of the part and then translate the parameters of the part into a CNC program by means of the CAM software. This final program, created by the CAM software, is fed into the machine and the manufacturing process begins. The part is finished when the machine finishes running the program. Another important aspect of the current and the most sophisticated CNC machines is the flexibility they have, since they can move in a range of 2.5 axes, 3 axes or 5 axes depending on the type of machine. CNC machining for woodWhile many might think that wood working is an art for only the most skilled carvers, the truth is that CNC machining for wood allows for a more efficient work. Even for the most complex designs. With CNC machining for wood is possible to produce larger parts in a shorter time. It also allows the woodworker to keep the natural beauty and strength of the wood used intact, something difficult to achieve with other type of machines for processing wood. Other benefits from using CNC machining for wood are: Complex shapes that are too difficult for manual work can be achieved easily. Higher precision and shorter production times. Higher efficiency and reduced material waste. Increased profitability. CNC machining for medical industryIt is well known that the medical industry is a very demanding one with all the standards that must be met. This is the case of CNC machining for medical industry. Fortunately, as it was mentioned above, the main benefits of CNC machining are high efficiency and high accuracy that leave almost no room for error. This makes CNC machining for medical industry the best manufacturing option in the sector, being precision machining the chosen alternative to meet the tight tolerance requirements. Other common requirements include: Complex geometries that usually require 5-axis machines. Very high levels of cleanliness. Possibility of machining different special materials. Top-level surface finish. Common applications of CNC machining for medical industry include: Implants and prosthetics. Surgical instruments. Electronic components for medical equipment. Micro medical devices which require micromachining. CNC machining for castingCasting is a manufacturing process that depends of good molds to obtain desired results. This means that it is necessary to select the best process to produce the molds. CNC machining for casting in 5-axis machines reduces the chance of error due to having to move the casting between machining operations. This error reduction allows for the casting to meet the tightest of tolerances. Another good application of CNC machining for casting is that most castings require a post processing to improve surface finish. CNC machining for casting allows to achieve the surface finish desired in a quick and efficient way. Moreover, CNC machining can deal with the type of materials commonly used for castings such as aluminum, which can be a problem for other manufacturing problems. CNC machining for aluminum Being a lightweight metal, aluminum is the preferred material for many applications, being automotive and aerospace the top users. However, its use in some of these applications requires very complex shapes. Moreover, thin parts may be required, which increases the possibility of deformation due to the low hardness and high thermal expansion of the material. Here’s where CNC machining for aluminum becomes important. 5-axis CNC machining for aluminum provides benefits such as: It is simple to set up, which reduces lead times and improves the efficiency It allows to work with complex geometry thanks to the ability of avoiding collision with the tool holder while tilting the wok table or the cutting tool. It can use shorter tools that are more rigid, some with high spindle speed rates which is achieved by reducing the load on the cutting tool. The parts don’t have to go through different workstations, meaning that the errors are reduced, the accuracy is increased, and the quality is ensured. These machines can use other alternatives such as water jet cutting or laser cutting which eliminate the problems of working with very thin aluminum pieces. CNC machining for aerospace parts With the number of components needed to assemble an aircraft, and the complexity of such components, it is clear that the aerospace industry requires the highest precision and efficiency possible out of a manufacturing process. Therefore, CNC machining for aerospace parts has grown in popularity, and it is now the go-to option for aerospace components manufacturing. CNC machining for aerospace parts needs to deal with complex requirements such as: Working with thin walls. Limiting material deformation, for example, when working with aluminum and other lightweight materials. Working with curved and complex geometries. On the other side, CNC machining is the best option for aerospace parts production as it provides the following benefits: It is a cost-effective process. It can provide high-quality results. It can work with custom designs. It provides high accuracy and precision engineering. It reduces and sometimes eliminates human error. It can produce complex geometries. CNC machining for jewelry In the past, jewels were only made by hand by fine artisans. However, it is not the case anymore, as more and more jewel producers are implementing methods to improve their efficiency and increase their profitability. There are different ways CNC machining for jewelry help artisans and jewel producers in general. The most common benefits found are: Easily create master models for casting the jewels. Quickly create casting molds with high accuracy. Create fine end-use jewels when using sophisticated CNC machines. Quickly and accurately create custom engravings. Easily finishing the jewels with marble faceting and jewel polishing processes. CNC machining tolerances It is true that CNC machining has taken manufacturing accuracy to very high levels. However, as it happens with other manufacturing process, the dimensions of the end product are never perfect. And here is where CNC machining tolerances play an important role. We have to remember that tolerances represent the maximum allowed variation for the same dimensions of two parts from the same series. They are usually set in the design phase. There are different aspects to be considered when setting the tolerances required: Mating components. Type of materials. Manufacturing processes available. Tighter tolerances are usually more expensive to achieve. Tolerances are usually classified according to how tight they are in the following groups: Fine tolerances. Medium tolerances. Coarse tolerances. Very coarse tolerances. In general, the limits for each group are set based on International Standards, including ANSI B4.1, ANSI B4.2, ISO 286, ISO 1829, ISO 2768, EN 20286 and JIS B 0401. For CNC machining tolerances, the standard limits are in the range of ± 0.005″ or 0.13mm. However, some very sophisticated services claim they can provide CNC machining tolerances as tight as ±0.0025mm. Here are some standard CNC machining tolerances depending on the CNC process: Lathe — ±0.005″ (0.13mm) Router — ± 0.005″ (0.13mm) 3-Axis Milling — ± 0.005″ (0.13mm) 5-Axis Milling — ± 0.005″ (0.13mm) Engraving — ± 0.005″ (0.13mm) Flatness — ± 0.010″ (0.25mm)
  • What are CNC machining services? Apr 17, 2025
    CNC machining services involve the use of computer - numerical - control (CNC) machines to fabricate parts and components. CNC machining services are highly automated, relying on pre - programmed software to control the movement of the machine tools. CNC machining services can be applied to a wide variety of materials, including metals, plastics, and composites.   CNC machining services are typically carried out using specialized CNC machines. These machines can be classified into different types, such as CNC milling machines, CNC lathes, and CNC routers. CNC machining services using milling machines are ideal for creating complex shapes by removing material from a workpiece. CNC machining services with lathes are mainly used for turning operations, producing cylindrical parts. CNC machining services involving routers are often used for cutting and shaping softer materials.   One of the key advantages of CNC machining services is their high precision. CNC machining services can achieve extremely tight tolerances, which is crucial in industries like aerospace and medical. CNC machining services also offer high repeatability. Once a program is set for a particular part, CNC machining services can reproduce that part with the same specifications over and over again. This is very beneficial for mass production.   CNC machining services are widely used in various industries. In the aerospace industry, CNC machining are used to manufacture components like turbine blades and wing structures. In the automotive industry, CNC machining services are essential for producing engine parts and chassis components. In the medical field, CNC machining services are utilized to fabricate surgical instruments and implants. CNC machining services also play an important role in the consumer goods industry, for example, in the production of high - end electronics and jewelry. he process of CNC machining services generally includes several steps. First, there is the design stage, where the part to be machined is designed using CAD software. Then, the CNC programming is done to convert the design into machine - readable instructions. After that, the setup of the CNC machine is carried out, including loading the proper tools and securing the workpiece. Next, the actual CNC machining services are performed as the machine follows the programmed instructions to cut or shape the material. Finally, quality control is conducted to ensure that the parts produced by CNC machining services meet the required standards.   CNC machining services also require careful consideration of several factors. Material selection is important for CNC machining services. Different materials may require different machining techniques and parameters. Tool selection is another aspect that affects CNC machining services. The right tools need to be chosen based on the material and the type of operation. Cost is also a factor in CNC machining services. The cost can vary depending on the complexity of the part, the material, and the quantity being produced.   In summary, CNC machining are a fundamental part of modern manufacturing. CNC machining services offer precision, repeatability, and the ability to create complex parts. CNC machining services are used in multiple industries for different applications. CNC machining continue to evolve with advancements in technology, enabling more efficient and accurate production. CNC machining services are an important aspect of the global manufacturing landscape. CNC machining services are constantly being improved to meet the increasing demands of various industries. CNC machining are a reliable and efficient way to produce high - quality parts and components. CNC machining services are here to stay and will continue to play a significant role in the future of manufacturing.      
  • Factory Show
    Factory Show Apr 28, 2025
    We are specialized in precise fabrication and supply of parts and components for  electronic non-standard isolation, microwave and nonferrous construction equipment, aerospace industry part, military industry part, consumer digital products, etc. We own many CNC precision machines and inspection equipment. Our Services include (but are not limited to): CNC milling, CNC turning, grinding; polishing, anodizing, plating, painting and assembly. We can process materials such as Aluminum, Brass, Bronze, Copper, Stainless Steel, Steel / Steel Alloy, Nylon, POM, Acrylic and Derlin.
1 2 3 4
Всего 4страницы

Нужна помощь? Пообщайтесь с нами

оставить сообщение
Для любого запроса информации или технической поддержки заполните форму. Все поля, отмеченные звездочкой*, обязательны для заполнения.
представлять на рассмотрение
Находясь в поиске FAQs?
СВЯЗАТЬСЯ С НАМИ #
+86 15375471059

Наши часы

Понедельник: 9:00–12:00; 14:00–18:00.

Вторник: 9:00–12:00; 14:00–18:00.

Среда: 9:00–12:00; 14:00–18:00.

Четверг: 9:00–12:00; 14:00–18:00.

Пятница: 9:00–12:00; 14:00–18:00.

(Все указанные выше времена указаны по китайскому времени)

Вы можете отправить нам электронное письмо в нерабочее время, и мы организуем бизнес-персонал для предоставления вам услуг.

Дом

Продукты

WhatsApp

Связаться с нами